Neutron diffraction and Mössbauer study of the magnetic structure of YFe$_6$Sn$_6$

J. M. Cadogan1, Suharyana1, D. H. Ryan2, O. Moze3, and W. Kockelmann4,5

1School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
2Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada
3Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via G. Campi 213/a, I-41100, Modena, Italy
4ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
5Mineralogical-Petrological Institute, University of Bonn, D-53115 Bonn, Germany

We have used time-of-flight (TOF) neutron powder diffraction, and both 57Fe and 119Sn Mössbauer spectroscopy over the temperature range 2–600 K to determine the magnetic ordering mode of the Fe sublattice in YFe$_6$Sn$_6$. The crystal structure is orthorhombic (space group Immm). The Fe sublattice orders antiferromagnetically with a Néel temperature of 558(5) K. The TOF neutron diffraction patterns obtained at 4 and 293 K show that the antiferromagnetic ordering of the Fe sublattice is along [100] with a propagation vector $\mathbf{q}=\{010\}$. The magnetic space group is $I_{\overline{p}m'm'\overline{m}}$. This magnetic structure is confirmed by our 119Sn Mössbauer spectra. © 2000 American Institute of Physics.

© 2000 American Institute of Physics