Magnetic properties of a novel Pr - Fe - Ti phase

Hong-Shuo Li¹, Suharyana¹, J. M. Cadogan¹, G. J. Bowden¹, Jian-Min Xu², S. X. Dou², and H. K. Liu²

¹School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia
²School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW 2033, Australia

In a systematic study of the (Pr₁₋ₓTiₓ)Fe₅ alloy series, the (Pr₀.₆₅Ti₀.₃₅)Fe₅ alloy has been found to have a dominant phase with either the rhombohedral Th₂Zn₁₇ structure or the newly discovered Nd₂(Fe,Ti)₁₉ (S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the Seventh International Symposium on Magnetic Anisotropy and Coercivity in R-T Alloys, Canberra, July 1992, p. 437) structure, depending on the annealing procedure. Powder x-ray diffraction patterns and scanning electron microscopy show that the sample annealed at a temperature of 850 °C followed by 1000 °C has the 2:17 structure whereas annealing at 1000 °C directly leads to the new 2:19 structure. Energy-dispersive x-ray analysis yields Pr:Fe:Ti ratios of 10.7:86.2:3.1 for the Pr₂(Fe,Ti)₁₇ phase and 9.2:85.9:4.9 for the Pr₂(Fe,Ti)₁₉ phase. ⁵⁷Fe Mössbauer spectroscopy (at 295 K) gives values for the average ⁵⁷Fe hyperfine field of 15.7 T for the 2:17 phase and 17.5 T for the 2:19 phase, respectively.