Pengklasifikasian Artikel Ilmiah Menggunakan Metode Naive Bayes Classifier (NBC)

B, DWI PRAMITA B (2018) Pengklasifikasian Artikel Ilmiah Menggunakan Metode Naive Bayes Classifier (NBC). Other thesis, Universitas Sebelas Maret.

[img] PDF - Published Version
Download (91Kb)

    Abstract

    Universitas Sebelas Maret telah banyak menerbitkan artikel ilmiah. Mengklasifikasikan banyak artikel sekaligus bukanlah hal yang mudah dilakukan. Semakin banyak artikel yang harus dikelompokkan maka tenaga dan waktu yang dibutuhkan juga semakin banyak. Metode Naive Bayes Classifier dapat digunakan untuk mengklasifikasikan artikel ilmiah dalam waktu singkat. Naive Bayes Classifier mengklasifikasikan masing-masing artikel berdasarkan bidang ilmu dengan menganalisis judul dan abstraknya. Salah satu metode seleksi fitur Document Frequency Improved diterapkan untuk meningkatkan kinerja klasifikasi. Penelitian menggunakan 292 artikel sebagai data latih dan 100 artikel sebagai data uji. Pengujian dilakukan dengan menerapkan 5 nilai threshold berbeda dari 1 hingga 2,5 dengan masing-masing nilai threshold diujikan sebanyak 5 kali. Hasil terbaik ditunjukkan pada nilai threshold 2 dengan nilai rata-rata akurasi, precision, recall, dan f-measure masing-masing sebesar 87,8%, 76,6%, 76,2%, dan 76,0%.

    Item Type: Thesis (Other)
    Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
    Q Science > QA Mathematics > QA76 Computer software
    Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam
    Fakultas Matematika dan Ilmu Pengetahuan Alam > Informatika
    Depositing User: Aren Dwipa
    Date Deposited: 13 Dec 2018 20:57
    Last Modified: 13 Dec 2018 20:57
    URI: https://eprints.uns.ac.id/id/eprint/42566

    Actions (login required)

    View Item