BAB 8
PERENCANAAN PONDASI

8.1 Data Perencanaan

Gambar 8.1. Denah Pondasi dan Perencanaan Pondasi untuk Kolom
Direncanakan pondasi telapak dengan kedalaman 2 m dengan panjang 2 m dan lebar 2 m.

$f'c = 20 \text{ MPa}$

$fy = 360 \text{ MPa}$

$\sigma \text{ tanah} = 2.00 \text{ kg/cm}^2 = 20000 \text{ kg/m}^2$

$\gamma \text{ tanah} = 1.7 \text{ t/m}^3 = 1700 \text{ kg/m}^3$

$\gamma \text{ beton} = 2.4 \text{ t/m}^3 = 2400 \text{ kg/m}^2$

$D = 19 \text{ mm}$

$\Phi \text{ sengkang} = 8 \text{ mm}$

$\text{Selimut beton} = 50 \text{ mm}$

Tebal plat $(h) = 500 \text{ mm}$

$d = h - p - \frac{1}{2} D \text{ tul. utama}$

$= 500 - 50 - (\frac{1}{2} \times 19)$

$= 440.5 \text{ mm}$

Dari hitungan SAP 2000 pada Frame diperoleh:

$Pu = 71330 \text{ kg}$

$Mu = 1513 \text{ kgm}$

Dimensi Pondasi

$\sigma \text{ tanah} = \frac{Pu}{A}$

$A = \frac{Pu}{\sigma \text{ tanah}} = \frac{71330}{20000} = 3.57 \text{ m}^2$

$B = L = \sqrt{A} = \sqrt{3.57} = 1.899 \sim 2.5 \text{ m}$

Direncanakan dimensi = 2.5 x 2.5 m

Chek Ketebalan

$d \geq \frac{Pu}{\phi \frac{1}{6} \sqrt{f'c} b} = \frac{71330}{0.6 \times \frac{1}{6} \sqrt{2} \times 3000} = 168.13 \sim 170 \text{ mm}$

Tebal plat = 0.50 m

Tebal selimut = 0.05 m
8.2 Perencanaan Kapasitas Dukung Pondasi

Pembebanan pondasi

Berat telapak pondasi \(= 2,5 \times 2,5 \times 0,5 \times 2400 \) = 7500 kg

Beban tanah urug \(= (2,5 \times 2,5) - (0,3 \times 0,3) \times (2 - 0,5) \times 1700 \) = 15708 kg

Pu = 71330 kg + V total = 94538 kg

\[
\varepsilon = \frac{\sum M}{\sum P} = \frac{1513}{71330}
\]

\(= 0,021 < (1/6 \times B) \)

\(= 0,021 < 0,416 \)

\(\sigma \) yang terjadi \(= \frac{V_{\text{tot}}}{A} \pm \frac{M_{\text{tot}}}{\frac{1}{6} \cdot b \cdot L^2} \)

\(\sigma \) tanah 1 \(= \frac{94538}{2,5 \times 2,5} + \frac{1513}{\frac{1}{6} \times 2,5 \times (2,5)^2} = 15707,07 \text{ kg/m}^2 \)

\(\sigma \) tanah 2 \(= \frac{94538}{2,5 \times 2,5} - \frac{1513}{\frac{1}{6} \times 2,5 \times (2,5)^2} = 14545,08 \text{ kg/m}^2 > 0 \text{ kg/m}^2 \)

\(\sigma \) yang terjadi < \(\sigma \) ijin tanah

\(15707,07 \text{ kg/m}^2 < 20000 \text{ kg/m}^2 \) Ok !
8.3 Perencanaan Tulangan Pondasi

8.3.1 Hitungan Tulangan Lentur

\[a = \frac{1}{2} (L-c) = \frac{1}{2} (2,5-0,30) = 1,1 \text{ m} \]

\[\text{Mu} = \frac{1}{2} \cdot \sigma_u \cdot B \cdot l^2 \]

\[\text{Mn} = \frac{\text{Mu}}{\phi} = \frac{23,76 \cdot 10^7}{0,9} = 26,4 \cdot 10^7 \text{ Nmm} \]

\[\text{Rn} = \frac{\text{Mn}}{b \cdot d^2} = \frac{26,4 \cdot 10^7}{2500 \cdot 440,5^2} = 0,54 \]
\[m = \frac{f_y}{0.85.f_c} = \frac{360}{0.85.20} = 21.17 \]

\[\rho_b = \frac{0.85.f_c}{f_y} \beta \left(\frac{600}{600 + f_y} \right) \]

\[= \frac{0.85.20}{360} \cdot 0.85 \left(\frac{600}{600 + 360} \right) = 0.025 \]

\[\rho_{\text{max}} = 0.75 \cdot \rho_b \]

\[= 0.75 \cdot 0.025 \]

\[= 0.019 \]

\[\rho_{\text{min}} = \frac{1.4}{f_y} = \frac{1.4}{360} = 0.0039 \]

\[\rho_{\text{ada}} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2.m.R_n}{f_y}} \right) \]

\[= \frac{1}{21.17} \left(1 - \sqrt{1 - \frac{2 \times 21.17 \times 0.54}{360}} \right) \]

\[= 0.00152 \]

\[\rho \leq \rho_{\text{max}} \]

\[\rho \leq \rho_{\text{min}} \]

Digunakan \(\rho_{\text{min}} = 0.0039 \)

As perlu \[= \rho_{\text{min}} \cdot b \cdot d \]

\[= 0.0039 \cdot 2500 \cdot 440.5 \]

\[= 4294.875 \text{ mm}^2 \]

As ada \[= \frac{1}{4} \cdot \pi \cdot D^2 \]

\[= \frac{1}{4} \cdot 3.14 \cdot (19)^2 \]

\[= 283.39 \text{ mm}^2 \]

Jumlah tulangan (n) \[= \frac{4294.875}{283.39} = 15.2 \sim 16 \text{ buah} \]

Jarak tulangan \[= \frac{2500}{16} = 156.25 \text{ mm} \]

dipakai D 19 – 150 mm
8.3.2 Hitungan Tulangan Geser

a. Tulangan geser tinjauan satu arah

\[A_{\text{efekif}} = \frac{1}{2} (L-(c+2d)) = 0.7 \text{ m} \]

\[V_u = \sigma_{\text{netto}} \times A_{\text{efekif}} \]

\[= 15707,07 \times (0.7 \times 2) \]

\[= 21989,9 \text{ kg} = 219899 \text{ N} \]

\[V_c = \frac{1}{6} \sqrt{f_c} \cdot b \cdot d \]

\[= \frac{1}{6} \sqrt{20.2500.440,5} \]

\[= 820823,28 \text{ N} \]

\[\varnothing V_c = 0,75 \cdot 820823,28 \]

\[= 615617,47 \text{ N} \]

\[0,5\varnothing V_c = 0,5 \cdot 615617,47 \]

\[= 307808,7 \text{ N} \]

Syarat Tulangan geser :

\[0,5\varnothing V_c < V_u \]
: 307808,7 N > 219899 N (Tidak Perlu Tulangan Geser)

\[
S_{\text{max}} \frac{d}{2} = \frac{440.5}{2} = 220.25 \text{ mm}
\]
dipakai sengkang D19 – 200 mm

b. Tulangan geser tinjauan dua arah

\[
A_{\text{efektif}} = (B \times L) - (c+d)^2
\]
\[
= (2,5 \times 2,5) - (0,30+0,44)^2
\]
\[
= 5,7 \text{ m}
\]
\[
V_u = \sigma_{\text{netto}} \times A_{\text{efektif}}
\]
\[
= 15707,07 \times 5,7
\]
\[
= 89158,2 \text{ kg} = 891582 \text{ N}
\]
\[
V_c = \frac{1}{6} \sqrt{f \cdot c \cdot b \cdot d}
\]
\[
= \frac{1}{6} \sqrt{20.2500 \times 440,5}
\]
\[
= 820823,28 \text{ N}
\]
\[\varnothing V_c = 0.75 \times 820823.28 \]
\[= 615617.47 \text{ N} \]
\[0.5 \varnothing V_c = 0.5 \times 615617.47 \]
\[= 307808.7 \text{ N} \]

Syarat Tulangan geser:
\[\varnothing V_c < V_u \]
\[: \quad 615617.47 \text{ N} < 891582 \text{ N} \]

Jadi diperlukan tulangan geser
\[\varnothing V_s = V_u - \varnothing V_c = 891582 - 615617.47 = 275964.5 \text{ N} \]
\[V_s \text{ perlu} = \frac{\varnothing V_s}{0.75} = \frac{275964.5}{0.75} = 367952.7 \text{ N} \]
\[A_v = 2 \times \frac{1}{4} \pi (19)^2 = 566.77 \text{ mm}^2 \]
\[S = \frac{A_v f_y d}{V_s \text{perlu}} = \frac{566.77 \times 360 \times 440.5}{367952.7} = 244.26 \text{ mm} \]
\[S_{\text{max}} = \frac{d}{2} = \frac{440.5}{2} = 220.25 \text{ mm} \]

Dipakai jarak tulangan D 19 – 200 mm

Jadi tulangan pondasi *foot plat* menggunakan D 19 – 200 mm
BAB 9
PERENCANAAN ANGGARAN BIAYA

9.1. Rencana Anggaran Biaya (RAB)
Rencana anggaran biaya (RAB) adalah tolok ukur dalam perencanaan pembangunan, baik rumah tinggal, ruko, rukan maupun gedung lainya. Dengan RAB kita dapat mengukur kemampuan materi dan mengetahui jenis-jenis material dalam pembangunan, sehingga biaya yang kita keluarkan lebih terarah dan sesuai dengan yang telah direncanakan.

9.2. Cara Hitungan
Secara umum cara yang digunakan untuk hitungan Rencana Anggaran Biaya (RAB) adalah sebagai berikut :

a. Melihat gambar rencana
b. Menghitung volume dari gambar
c. Analisa harga upah & bahan (Dinas Pekerjaan Umum Kabupaten Surakarta)
d. Mengalikan volume dengan harga satuan
e. Harga satuan terlampir

9.3. Hitungan Volume Pekerjaan

9.3.1. Pekerjaan Persiapan

1. Pembersihan Lokasi = panjang bangunan (p) x lebar bangunan (l)
 = 31,5 m x 24 m
 = 756 m²

2. Pagar Pengaman = 2 x {(p + 4) + (l + 4)}
 = 2 x {(31,5 + 4) + (24 + 4)}
3. Pengukuran dan bowplank
 \[= 2 \times ((p + 2) + (l + 2))\]
 \[= 2 \times ((31.5 + 2) + (24 + 2))\]
 \[= 119 \text{ m}\]

4. Pembuatan bedeng
 \[= p \times l \times t\]
 \[= (3 + 3) \times (3 + 4)\]
 \[= 21 \text{ m}^2\]

9.3.2 Pekerjaan Tanah

9.3.2.1 Pekerjaan Galian Tanah

1. Galian tanah sedalam 1 m
 a. Pondasi menerus PM 1
 Panjang pondasi \[= 106.5 \text{ m}\]
 Lebar galian (L) \[= 1 \text{ m}\]
 Tinggi galian (H) \[= 1 \text{ m}\]
 Volume \[= 106.5 \text{ m}^3\]
 b. Pondasi menerus PM 2
 Panjang pondasi \[= 18 \text{ m}\]
 Lebar galian (L) \[= 1 \text{ m}\]
 Tinggi galian (H) \[= 1 \text{ m}\]
 Volume \[= 18 \text{ m}^3\]
 c. Pondasi Footplate F2
 Panjang profil (B) \[= 2 \text{ m}\]
 Lebar profil (L) \[= 1.8 \text{ m}\]
 Tinggi galian (H) \[= 1 \text{ m}\]
 Jumlah pondasi \[= 2 \text{ buah}\]
 Volume \[= 7.2 \text{ m}^3\]
 Volume total galian tanah 1 m \[= 131.7 \text{ m}^3\]
2. Galian tanah sedalam 2 m
 a. Pondasi Footplate F1
 Panjang profil (B) = 2,5 m
 Lebar profil (L) = 2,5 m
 Tinggi galian (H) = 2,1 m
 Jumlah pondasi = 45 buah
 Volume = B x L x H x jumlah pondasi = 590,625 m³
 Volume total galian tanah 2 m = 590,625 m³

3. Galian tanah sedalam 3 m
 a. Septitank
 Panjang profil (B) = 2,5 m
 Lebar profil (L) = 1,3 m
 Kedalaman galian (H) = 2,8 m
 Volume = B x L x H = 9,1 m³
 b. Peresapan
 Lebar galian atas (a) = 1,55 m
 Lebar galian bawah (b) = 1 m
 Tinggi galian (H) = 2,15 m
 Volume = \(\frac{1}{2} \times (a+b) \times h \) = 2,74125 m³
 Volume total galian tanah 3 m = 11,84125 m³

9.3.2.2 Pekerjaan Urugan tanah kembali
 a. Urugan tanah kembali
 Volume Galian = 734,16625 m³
 Volume urugan tanah = \(\frac{1}{3} \times \text{vol galian} \) = 244,7220833 m³
 b. Urugan tanah lantai
 Luas Lantai = 756 m²
 Tinggi urugan = 0,35 m
 Volume urugan tanah lantai = luas x tinggi = 264,6 m³
 c. Pemadatan tanah
 Luas Lantai = 756 m²
 Tinggi urugan = 0,2 m
 Volume urugan tanah lantai = luas x tinggi
Total Volume urugan tanah = 733,0221 m³

9.3.2.3 Urugan Pasir

a. Pondasi menerus PM 1
Panjang pondasi = 106,5 m
Lebar galian (L) = 1 m
Tinggi galian (H) = 0,05 m
Volume = L x H x panjang pondasi = 5,325 m³

b. Pondasi menerus PM 2
Panjang pondasi = 18 m
Lebar galian (L) = 1 m
Tinggi galian (H) = 0,05 m
Volume = L x H x panjang pondasi = 0,9 m³

c. Pondasi Footplate F1
Panjang profil (B) = 2,5 m
Lebar profil (L) = 2,5 m
Tinggi galian (H) = 0,05 m
Jumlah pondasi = 45 buah
Volume = B x L x H x jumlah pondasi = 14,0625 m³

d. Pondasi Footplate F2
Panjang profil (B) = 1,8 m
Lebar profil (L) = 2 m
Tinggi galian (H) = 0,05 m
Jumlah pondasi = 1 buah
Volume = B x L x H x jumlah pondasi = 0,18 m³

e. Lantai
Luas Lantai = 756 m²
Tinggi urugan = 0,05 m
Volume urugan tanah lantai = luas x tinggi = 37,8 m³
Total Volume urugan pasir = 58,2675 m³
9.3.2.4 Urugan Sirtu Padat
a. Pondasi Footplat F1
 Panjang Urugan = 1,8 m
 Lebar Urugan = 2 m
 Tinggi urugan = 0,05 m
 Volume urugan = PxL x T
 = 0,18 m³

b. Pondasi Footplat F2
 Panjang Urugan = 2,5 m
 Lebar Urugan = 2,5 m
 Tinggi urugan = 0,05 m
 Volume Urugan = PxL x T
 = 0,3125 m³

Total Volume Urugan = 0,4925 m³

9.3.3 Pekerjaan Pondasi
9.3.3.1 Pondasi batu belah 1:5
a. Pondasi menerus PM 1
 Panjang pondasi = 106,5 m
 Lebar galian atas (a) = 0,3 m
 Lebar galian bawah (b) = 0,8 m
 Tinggi galian (H) = 0,8 m
 Volume = \(\frac{1}{2} \times (a+b) \times p \times h \)
 = 46,86 m³

b. Pondasi menerus PM2
 Panjang pondasi = 18 m
 Lebar galian atas (a) = 0,3 m
 Lebar galian bawah (b) = 0,8 m
 Tinggi galian (H) = 0,8 m
 Volume = \(\frac{1}{2} \times (a+b) \times p \times h \)
 = 7,92 m³

Total volume pondasi batu belah = 54,78 m³

9.3.3.2 Pondasi batu kosong (an stamping)
a. Pondasi menerus PM 1
 Panjang (P) = 106,5 m
 Lebar galian (L) = 1 m
 Tinggi galian (H) = 0,15 m
 Volume = PxLxT
 = 15,975 m³

b. Pondasi menerus PM2
Panjang (P) = 18 m
Lebar galian (L) = 1 m
Tinggi galian (H) = 0,15 m
Volume = PxLxT = 2,7 m³
Total volume pondasi batu kosong = 18,675 m³

9.3.4 Pekerjaan Beton

1. Lantai Kerja
 Luas Lantai = 756 m²
 Tinggi urugan = 0,003 m
 Volume = luas x tinggi
 = 2,268 m³

2. Pondasi Beton Bertulang (Footplate)
 a. Pondasi Footplate F1 Plat
 Panjang profil (B) = 2,5 m
 Lebar profil (L) = 2,5 m
 Tinggi galian (H) = 0,5 m
 Jumlah pondasi = 45 buah
 Volume = B x L x H x jumlah pondasi
 = 140,625 m³

 Kaki
 Panjang profil (B) = 0,3 m
 Lebar profil (L) = 0,3 m
 Tinggi galian (H) = 1,5 m
 Jumlah pondasi = 45 buah
 Volume = B x L x H x jumlah pondasi
 = 6,075 m³
 Volume total = 146,7 m³
 b. Pondasi Footplate F2 Plat
 Panjang profil (B) = 1,8 m
 Lebar profil (L) = 2 m
 Tinggi galian (H) = 0,25 m
Jumlah pondasi = 1 buah
Volume = B x L x H x jumlah pondasi = 0,9 m³

Kaki
Panjang profil (B) = 0,3 m
Lebar profil (L) = 0,3 m
Tinggi galian (H) = 0,75 m
Jumlah pondasi = 1 buah
Volume = B x L x H x jumlah pondasi = 0,0675 m³
Volume total = 0,9675 m³
Total Volume = 147,6675 m³

3. Sloof
Panjang keliling (B) = 342 m
Lebar profil (L) = 0,2 m
Tinggi profil (H) = 0,3 m
Volume = B x L x H = 20,52 m³

4. Kolom
a. Kolom utama (30 x 30)
Panjang profil (B) = 0,3 m
Lebar profil (L) = 0,3 m
Tinggi kolom (H) = 4 m
Jumlah kolom (n) = 69 buah
Volume = B x L x H x n = 24,84 m³

b. Kolom Praktis (150 kg besi + bekisting)
Panjang profil (B) = 0,15 m
Lebar profil (L) = 0,15 m
Tinggi kolom (H) = 4 m
Jumlah kolom (n) = 8 buah
Volume = B x L x H x n = 0,72 m³
Volume total kolom = 25,56 m³
5. **Balok**

a. Ring balk (15 x 15)

- Panjang keliling (B) = 96 m
- Lebar profil (L) = 0,15 m
- Tinggi profil (H) = 0,15 m
- Volume = 2,16 m³

b. Ring balk (35 x 50)

- Panjang keliling (B) = 15 m
- Lebar profil (L) = 0,35 m
- Tinggi profil (H) = 0,5 m
- Volume = 2,625 m³

c. Balok Anak (20x 35)

- Panjang keliling (B) = 157,5 m
- Lebar profil (L) = 0,2 m
- Tinggi profil (H) = 0,35 m
- Volume = 11,025 m³

d. Balok Anak (40x 70)

- Panjang keliling (B) = 4,5 m
- Lebar profil (L) = 0,4 m
- Tinggi profil (H) = 0,7 m
- Volume = 1,26 m³

e. Balok Induk (30 x 60)

- Panjang keliling (B) = 216 m
- Lebar profil (L) = 0,3 m
- Tinggi profil (H) = 0,6 m
- Volume = 38,88 m³

Volume total balok = 55,95 m³

6. **Plat**

Plat Lantai

- Luas (L) = 729 m
- Tebal plat (h) = 0,12 m
- Volume = 87,48 m³
7. **Tangga**

a. Plat Tangga

Antride (A) = 0,3 m
Optride (O) = 0,16 m
Tebal Plat (Ht) = 0,15 m
Lebar tangga (L) = 2,1 m
Jumlah anak tangga (n) = 24 buah

Volume = \((A \times Ht) + \left(\frac{1}{2} \times A \times O \right) \times L \times n\)

= 3,4776 m³

b. Plat Bordes

Panjang (P) = 4,5 m
Lebar (L) = 2 m
Tebal (t) = 0,15 m
Jumlah bordes (n) = 1 buah

Volume = \(P \times L \times t \times n\)

= 1,35 m³

Volume total plat tangga = 4,8276 m³

9.3.5 **Pekerjaan Besi dan Alumunium**

9.3.5.1 **Pasangan besi profil**

a. Seperempat kuda - kuda (SK1)

Berat Profil = 7,54 kg/m
Panjang = 215,36 m
Volume SK 1 = Berat profil x Panjang
= 1623,8144 kg

b. Setengah kuda - kuda (SK2)

Berat Profil = 7,54 kg/m
Panjang = 175,98 m
Volume SK 2 = Berat profil x Panjang
= 1326,8892 kg

c. Kuda - kuda Jurai (KJ)

Berat Profil = 7,54 kg/m
Panjang = 404,72 m
Volume KJ = Berat profil x Panjang
= 3051,5888 kg

d. Kuda - kuda Trapesium (KT1)

Berat Profil luar = 12,76 kg/m
Panjang = 99,72 m
Volume = Berat profil x Panjang
= 1272,4272 kg
Berat Profil dalam
Panjang
Volume
= 10,84 kg/m
= 132,48 m
= Berat profil x Panjang
= 1436,0832 kg

e. KU1
Berat Profil luar
Panjang
Volume
= 12,76 kg/m
= 103,44 m
= Berat profil x Panjang
= 1319,8944 kg
Berat Profil dalam
Panjang
Volume
= 10,84 kg/m
= 211,44 m
= Berat profil x Panjang
= 2292,0096 kg

f. KU2
Berat Profil luar
Panjang
Volume
= 10,84 kg/m
= 51,72 m
= Berat profil x Panjang
= 560,6448 kg
Berat Profil dalam
Panjang
Volume
= 7,54 kg/m
= 105,72 m
= Berat profil x Panjang
= 797,1288 kg
Volume Total Besi Profil
= Vol Rangka kuda - kuda
= 13680,4804 kg

9.3.5.2 Pasangan rangka gording
a. Gording
Dimensi Gording
Berat gording
Panjang
2 x (p+l)
G0 (G. tembok)
G1 (luar 1)
G2 (luar 2)
G3 (luar 3)
G4 (luar 4)
G5 (luar5)
G6 (nok)
Volume = Berat x Panjang
= (125 x 100 x 20 x 2.3)
= 9,02 kg/m
= 111
= 95
= 79
= 63
= 47
= 31
= 7.4
= 433,4 m
= 3909,268 kg
9.3.5.3 Pekerjaan Kusen Aluminium

a. Pintu Utama, P1
Panjang = 8,2 m
Jumlah (n) = 1 buah
Volume Pintu = Panjang x n = 8,2 m

b. Pintu P2
Panjang = 6,8 m
Jumlah (n) = 4 buah
Volume Pintu = Panjang x n = 27,2 m

c. Pintu P3
Panjang = 8,8 m
Jumlah (n) = 1
Volume Pintu = Panjang x n = 8,8 m

d. J1
Panjang = 7,08 m
Jumlah (n) = 2 buah
Volume Rangka = Panjang x n = 14,16 m

e. BV
Panjang = 2 m
Jumlah (n) = 19 buah
Volume Rangka = Panjang x n = 38 m

f. bingkai dinding kaca
Panjang = 15,5 m
Jumlah (n) = 21 buah
Volume Rangka = Panjang x n = 325,5 m
Panjang = 13,5 m
Jumlah (n) = 4 buah
Volume Rangka = Panjang x n = 54 m
Panjang = 23,6 m
Jumlah (n) = 2 buah
Volume Rangka = Panjang x n = 47,2 m
Panjang = 14 m
Jumlah (n) = 1 buah

Volume Rangka = Panjang x n = 14 m

Volume Rangka = 38 m

Volume Rangka bingkai dinding kaca = 445,5 m

Volume total kusen alumunium = 541,86 m

9.3.5.4 Pemasangan 1m2 pintu Alumunium

a. Pintu P2
 Panjang = 5,6 m^2
 Jumlah (n) = 6 bh
 Volume Pintu = Panjang x n = 33,6 m^2

b. Pintu P3
 Panjang = 11,4 m^2
 Jumlah (n) = 1 bh
 Volume Pintu = Panjang x n = 11,4 m^2

c. J1
 Panjang = 4,56 m^2
 Jumlah = 2 bh
 Volume = Panjang x n = 9,12 m^2

 Volume total = Vol P2+P3+J1 = 54,12 m^2

9.3.5.5 Pemasangan Pintu PVC = 6 bh

9.3.5.6 Pemasangan Folding Gate = 18 m^2

9.3.6. Pekerjaan Dinding

1. Pasangan dinding transram
 a. Dinding bangunan
 Panjang keliling (p) = 83,25 m
 Tinggi (H) = 0,5 m
 Tebal (t) = 0,12 m
 Volume = p x H x t = 4,995 m^3
b Dinding K.M

Panjang keliling (p) = 39.75 m
Tinggi (H) = 1.5 m
Tebal (t) = 0.12 m
Volume = \(p \times H \times t \)
= \(7,155 \) m³

Dinding u/ Septitank & Peresapan

Luas = 6,156 m
Tebal (t) = 0.15 m
Volume = \(L \times t \)
= \(0.9234 \) m³

Volume total dinding transram = \(13,0734 \) m³

2. Pasangan dinding

Luas dinding lt 1 = 530 m²
Luas dinding lt 2 = 298 m²
Luasan dinding on trasram = 139,125 m²
Luasan dinding total = 967,125 m²

\(J1 = 2 \times (p \times l) \)
= 3,648

\(bv = 18 \times (p \times l) \)
= 4,32

\(P2 = 4 \times (p \times l) \)
= 18

\(P4 = 2 \times (p \times l) \)
= 3,28

Luasan total lubang P & J = 29,248 m²

Volume dinding asli = \(\text{luasan total - L lub} \times 0.12 \)

Volume Total = \(112,54524 \) m³

9.3.7. Pekerjaan Plesteran

1. Plesteran Dinding Transram (1:3)

Volume plesteran = \(2 \times \text{volume total dinding transram} \)
= \(26,1468 \) m²

2. Plesteran Dinding (1:5)

Volume plesteran = \(2 \times \text{volume total dinding} \)
= \(225,09048 \) m²
3. **Acian**

\[\text{Volume plesteran} = 2 \times (V_t \text{ d. transram} + d. \text{ asli}) = 251,23728 \text{ m}^2 \]

9.3.8. **Pekerjaan Penutup Atap**

1. **Pasang Genteng**

 \[\text{Volume} = (2 \times \text{luas sisi bangun}) = 522,6 \text{ m}^2 \]

2. **Pasang Nok Genteng (Bubungan)**

 \[\text{Volume} = (P.Jurai \times 4) + P.Nok = 80,82 \text{ m} \]

9.3.9. **Pekerjaan Langit-Langit (Plafond)**

1. **Pasang langit" akustik + al**

 \[\text{luas ruangan lt 1 & 2} = \text{luas lantai} - \text{r.tangga} = 1485 \text{ m}^2 \]

2. **Pasang list langit " (gypsum)**

 \[\text{panjang dinding} = 342 \text{ m} \]

9.3.10. **Pekerjaan Penutup Lantai dan Dinding**

1. **Ubin PC granit 60 x 60**

 \[\text{luas ruangan lt 1 & 2} = 1291,5 \text{ m}^2 \]

2. **Ubin PC Keramik 40 x 40**

 \[\text{Luas ruangan lt 1 & 2} = 100,5 \text{ m}^2 \]

3. **Ubin PC Keramik 20 x 20**

 \[\text{luas kamar mandi lt 1 & 2} = 80,52 \text{ m}^2 \]

9.3.11. **Pekerjaan Kunci dan Kaca**

1. **Pekerjaan Kunci**

 - a **Handle dan Kunci** = 6 buah
 - b **Kunci Tanam** = 4 buah
 - c **Engsel Pintu** = 24 buah
 - f **Engsel Tanam** = 4 buah
 - g **Kait Angin** = 4 buah
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Door Closer</td>
<td>=</td>
<td>5</td>
</tr>
<tr>
<td>i</td>
<td>Door Holder/Pegangan pintu</td>
<td>=</td>
<td>5</td>
</tr>
<tr>
<td>j</td>
<td>Handle Pintu Alumunium</td>
<td>=</td>
<td>6</td>
</tr>
<tr>
<td>k</td>
<td>Pull handle</td>
<td>=</td>
<td>4</td>
</tr>
<tr>
<td>l</td>
<td>Patch Lock</td>
<td>=</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Pekerjaan Kaca

A. Pekerjaan Kaca Tempered 12 mm

a. Pintu P1

Panjang = 3 m
Jumlah (n) = 1 bh
Volume Pintu = Panjang x n = 3 m²

b. Pintu P3

Panjang = 2,776 m
Jumlah (n) = 1 bh
Volume = Panjang x n = 2,776 m²

c. Dinding Kaca

Luas = 263 m²
P1 = 1x (p x l) = 4,18 bh
P3 = 1x (p x l) = 4,25 m²
Volume Total Lubang = 8,43 m²
Volume = L.dinding - L.Lubang = 254,57 m²
Volume Total = 260,346 m²

B. Pekerjaan Kaca iced glass 3 mm

a. Pintu P2

Panjang = 1,3761 m
Jumlah (n) = 6 bh
Volume = Panjang x n = 8,2566 m²

b. BV

Panjang = 0,1 m
Jumlah (n) = 19
Volume = Panjang x n = 1,9 m²
Volume Total = 10,1566 m²
C. Pekerjaan Kaca bening 5 mm
 a. Jendela J1
 Panjang = 0,9248 m
 Jumlah (n) = 2 bh
 Volume = Panjang x n = 1,8496 m²

9.3.12. Pekerjaan Kayu
1. Pasang Lisplank (3x20) Kayu Kamper
 Panjang sisi luar genteng = 119 m

2. Pemisah dinding plywood 1m²
 panjang = 66,5 m
 tinggi = 4 m
 Luas dinding = p x t = 266 m²
 p² = 2 x (p x l) = 9
 p⁴ = 4 x (p x l) = 6,56
 Luasan total lubang = 15,56 m²
 Luas dinding asli = luasan d. total - L lub = 250,44 m²

3. Pasang Rangka Atap
 Kaso = Bentang x P. miring x jarak reng x 2 sisi = 248,25 m²
 Reng = Bentang x P. miring x jarak reng x 2 sisi = 248,15 m²
 Volume Total = 496,5 m²

9.3.13. Pekerjaan Cat
1. Pengecetan bidang kayu baru
 luas permukaan lisplank = 119 m

2. Pengecetan bidang tembok baru
 volume = luasan acian - luas penutup dinding = 251,23728 m²

9.3.14. Pekerjaan Sanitasi
 a. Close Duduk = 6 buah
 b. Urinior = 2 buah
<table>
<thead>
<tr>
<th>No</th>
<th>Item Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Wastafel</td>
<td>9</td>
</tr>
<tr>
<td>d</td>
<td>Bak cuci piring</td>
<td>9</td>
</tr>
<tr>
<td>e</td>
<td>Bak Mandi</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>Floor drain</td>
<td>6</td>
</tr>
<tr>
<td>g</td>
<td>Bak kontrol 60x60 t = 65 cm</td>
<td>4</td>
</tr>
<tr>
<td>h</td>
<td>Pipa PVC Ø 3/4''(air bersih)</td>
<td>110</td>
</tr>
<tr>
<td>i</td>
<td>Pipa PVC Ø 3'' (air kotor)</td>
<td>145</td>
</tr>
<tr>
<td>j</td>
<td>Pipa PVC Ø 4'' (septictank)</td>
<td>28</td>
</tr>
<tr>
<td>k</td>
<td>Keran 3/4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3.15. Pekerjaan Instalasi Listrik</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pasang instalasi titik lampu (TL 40 WATT)</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Pasang instalasi titik lampu (DL 20 WATT)</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Pasang instalasi titik lampu (DL 18 WATT)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Pasang instalasi titik lampu (DL 7 WATT)</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Pasang instalasi + stop kontak</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Pasang sakelar ganda</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Pasang sakelar tunggal</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Pasang unit sekereng</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Pasang instalasi pompa air (125 WATT)</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Memasang panel</td>
<td>1</td>
</tr>
</tbody>
</table>
9.4. **Rekapitulasi Rencana Anggaran Biaya**

Berikut ini adalah tabel hasil perhitungan RAB pada perencanaan gedung Pasar Swalayan dan Pujasera 2 lantai.

Tabel 9.1. Rekapitulasi Perhitungan RAB

<table>
<thead>
<tr>
<th>NO</th>
<th>JENIS PEKERJAAN</th>
<th>TOTAL BIAYA (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>PEKERJAAN PERSIAPAN</td>
<td>82.065.013,80</td>
</tr>
<tr>
<td>II</td>
<td>PEKERJAAN TANAH</td>
<td>74.648.679,45</td>
</tr>
<tr>
<td>III</td>
<td>PEKERJAAN PONDASI</td>
<td>51.423.691,03</td>
</tr>
<tr>
<td>IV</td>
<td>PEKERJAAN BETON</td>
<td>1.674.389.073,01</td>
</tr>
<tr>
<td>V</td>
<td>PEKERJAAN BESI DAN ALUMUNIUM</td>
<td>559.246.582,96</td>
</tr>
<tr>
<td>VI</td>
<td>PEKERJAAN DINDING</td>
<td>13.138.455,39</td>
</tr>
<tr>
<td>VII</td>
<td>PEKERJAAN PLESTERAN</td>
<td>16.867.576,40</td>
</tr>
<tr>
<td>VIII</td>
<td>PEKERJAAN PENUTUP LANTAI DAN DINDING</td>
<td>533.082.566,54</td>
</tr>
<tr>
<td>IX</td>
<td>PEKERJAAN PLAFOND</td>
<td>300.981.829,50</td>
</tr>
<tr>
<td>X</td>
<td>PEKERJAAN PENUTUP ATAP</td>
<td>88.015.152,59</td>
</tr>
<tr>
<td>XI</td>
<td>PEKERJAAN KUNCI DAN KACA</td>
<td>160.189.737,99</td>
</tr>
<tr>
<td>XII</td>
<td>PEKERJAAN KAYU</td>
<td>178.638.564,04</td>
</tr>
<tr>
<td>XIII</td>
<td>PEKERJAAN CAT</td>
<td>10.986.886,83</td>
</tr>
<tr>
<td>XIV</td>
<td>PEKERJAAN SANITASI GEDUNG</td>
<td>73.887.167,22</td>
</tr>
<tr>
<td>XV</td>
<td>PEKERJAAN INSTALASI LISTRIK</td>
<td>14.741.500,00</td>
</tr>
<tr>
<td></td>
<td>JUMLAH</td>
<td>3.832.302.476,74</td>
</tr>
<tr>
<td></td>
<td>TOTAL + PPN 10%</td>
<td>4.215.532.724,41</td>
</tr>
<tr>
<td></td>
<td>JUMLAH PER m2</td>
<td>2.788.050,74</td>
</tr>
</tbody>
</table>