KARAKTERISASI SHELLAC-MONTMORILLONITE NANOKOMPOSIT
YANG DIFABRIKASI DENGAN METODE SOLVENT-CASTING

Disusun oleh:
Nina Nurcahyani
M02100047

SKRIPSI

Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains

JURUSAN FISIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS SEBELAS MARET
SURAKARTA
April, 2015
HALAMAN PERSETUJUAN

SKRIPSI

Karakterisasi Shellac-Montmorillonite Nanokomposit yang Difabrikasi dengan Metode Solvent Casting

Oleh:
Nina Nurcahyani
M0210047

Telah Disetujui Oleh

Pembimbing I

[Signature]

Khairuddin, S.Si., M.Phil., Ph.D
NIP. 19701018 199702 1 001

Tanggal: 09 Juni 2015

Pembimbing II

[Signature]

Edi Pramono, M.Si
NIP. 19830918 200812 1 003

Tanggal: 09 Juni 2015
HALAMAN PENGESAHAN

Skripsi dengan judul: Karakterisasi Shellac-Montmorillonite Nanokomposit yang Difabrikasi dengan Metode Solvent Casting

Yang ditulis oleh:
Nama : Nina Nurcahyani
NIM : M0210047

Telah diuji di depan dewan pengujipada
Hari : Rabu
Tanggal : 22 April 2015

Dewan Penguji :
1. Ketua Penguji
 Drs. Hery Purwanto, M.Sc.
 NIP 19590518 199703 1 002
2. Sekretaris Penguji
 Budi Legowo, S.Si., M.Si
 NIP 19730510 199903 1 002
3. Anggota Penguji 1
 Khairuddin, S.Si., M.Phil., Ph.D
 NIP 19701018 199702 1 001
4. Anggota Penguji 2
 Edi Pramono, M.Si
 NIP 19830918 200812 1 003

Disahkan pada tanggal Mei 2015
oleh
Ketua Jurusan Fisika
Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Sebelas Maret Surakarta

Ahmad Marzuki, S.Si., Ph.D
NIP: 19680508 199702 1 001
PERNYATAAN

Dengan ini saya menyatakan bahwa isi intelektual Skripsi saya yang berjudul "KARAKTERISASI SHELLAC MONTMORILLONITE NANOKOMPOSIT YANG DIFABRIKASI DENGAN METODE SOLVENT-CASTING" adalah benar-benar hasil penelitian saya sendiri dan sepenuhnya saya hingga saat ini isi Skripsi ini tidak berisi materi yang telah dipublikasikan atau ditulis oleh orang lain atau materi yang telah diajukan untuk mendapatkan gelar kesarjanaan di Universitas Sebelas Maret atau Perguruan Tinggi lainnya kecuali telah dituliskan di daftar pustaka Skripsi ini dan segala bentuk bantuan dari semua pihak telah ditulis di bagian ucapan terimakasih.

Surakarta, April 2015

Penulis
MOTTO

Maka nikmat Tuhan manakah yang kamu dustakan?

(Qs.Ar-rahhman)

Maka bersabarlah kamu dengan kesabaran yang baik.

(Qs.Al-Ma’arij:5)

Dan pada sebahagian malam hari bersembahyang tahajudlah kamu sebagai suatuibadah tambahan bagimu; mudah-mudahan Tuhan-mu mengangkat kamu ketempat yang terpuji.

(QS Al Isra’: 79)

Sesuatu yang berlebihan itu tidak baik. Termasuk keinginan sekalipun. Cukuplah bersyukur atas apa yang kita terima.

(Putra Rifandi)

Kelebihan seorang alim (ilmuwan) terhadap seorang ’abid (ahli ibadah) iberat bulan purnama terhadap seluruh bintang.

(HR. Abu Dawud)
PERSEMBAHAN

Karya ini kupersembahkan kepada:
Bapak Ibuku Tercinta,
Adikku, Gina
INDONESIA
Karakterisasi Shellac-Montmorillonite Nanokomposit yang Difabrikasi
Dengan Metode Solvent-Casting

NINA NURCAHYANI/M0210047
Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Sebelas Maret Surakarta

Abstrak

Keywords: Shellac-montmorillonite nanokomposit, Uji Sifat Perintang, Uji Sifat Thermal, Uji Struktur Molekul
Characterization and Fabrication of Shellac-Montmorillonite with Solvent Casting Method

NINA NURCAHYANI/M0210047
Physics Departement, Faculty of Mathematics And Natural Science
Sebelas Maret University of Surakarta

Abstract

Fabricated and characterized of shellac which has been reinforced using montmorillonite (MMT) clay has been done in this research. Shellac-MMT nanocomposite was fabricated by solvent casting method. It showed that drying MMT-shellac suspension to create films at 50 °C produced more homogeneous films than those of samples dried at room temperature. Thermal Gravimetry Analyzer (TGA) showed that thermal stability of the composites were increased with the increase of MMT content in the range 150 °C-520 °C. Water vapour cumulation of the nanocomposite shellac increases linearly with time within the range of this study. (2 days). Further analysis showed that water barrier properties were improved with MMT content up to 10 wt %, then were decreased with further MMT addition.

Keywords: Shellac-montmorillonite nanocomposite, TGA, FTIR, WVTR
KATA PENGANTAR

Puji syukur kepada Allah SWT atas segala limpahan nikmat dankaruniaNya, sehingga penulis dapat menyelesaikan penulisan skripsi. Sholawat dan salam senantiasa penulis haturkan kepada Rosulullah SAW sebagai pembimbing seluruh umat manusia.

Skripsi yang penulis susun sebagai bagian dari syarat untuk mendapatkan gelar sarjana sains ini penulis beri judul “Karacterisasi Shellac/Montmorillonite Nanokomposit yang Difabrikasi Dengan Metode Solvent-Casting”. Atas bantuan yang sangat besar selama proses pengerjaan skripsi ini, ucapan terima kasih secara khusus penulis sampaikan kepada:
1. Dekan Fakultas MIPA Universitas Sebelas Maret.
2. Ketua Jurusan Fisika Fakultas MIPA Universitas Sebelas Maret.
3. Bapak Khairuddin, S.Si, Ph.D. selaku Pembimbing I yang telah memberi motivasi, bimbingan, ide serta saran dalam penyusunan skripsi.
4. Bapak Edi Pramono, S.Si, M.Si selaku Pembimbing II yang telah memberi motivasi, bimbingan, ide serta saran dalam penyusunan skripsi.
5. Bapak Nuryani, S.Si, M.Si dan Ibu Viska Inda Variani, S.Si, M.Si. selaku Pembimbing Akademis yang telah memberikan motivasi serta selalu mendampingi.
6. Ayah, Ibu, dan adekku tercinta yang selalu memberikan do’a, perhatian, dan motivasi yang tak terkiraan.
8. Teman-teman FISIKA FMIPA UNS dan semua pihak yang telah membantu penulis sehingga laporan penelitian ini dapat terselesaikan dengan baik.

Penulis berharap semoga skripsi ini dapat memberikan tambahan pengetahuan bagi pembaca. Aamiin.

Surakarta, April 2015

Nina Nurcahyani
PUBLIKASI

Dengan ini saya menyatakan sebagian dari skripsi saya yang berjudul “KARAKTERISASI SHELLAC-MONTMORILLONITE NANOKOMPOSIT YANG DIFABRIKASI DENGAN METODE SOLVENT-CASTING” telah dipublikasikan pada DIGILIB Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta.
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALAMAN JUDUL</td>
<td>i</td>
</tr>
<tr>
<td>HALAMAN PERSETUJUAN</td>
<td>ii</td>
</tr>
<tr>
<td>HALAMAN PENGESAHAN</td>
<td>iii</td>
</tr>
<tr>
<td>HALAMAN PERNYATAAN</td>
<td>iv</td>
</tr>
<tr>
<td>HALAMAN MOTTO</td>
<td>v</td>
</tr>
<tr>
<td>HALAMAN PERSEMBAHAN</td>
<td>vi</td>
</tr>
<tr>
<td>HALAMAN ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>HALAMAN ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
<td>ix</td>
</tr>
<tr>
<td>HALAMAN PUBLIKASI</td>
<td>x</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>xi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>xiii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>xiv</td>
</tr>
<tr>
<td>BAB I. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Batasan Masalah</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Perumusan Masalah</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>1.5. Manfaat Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>BAB II. TINJAUAN PUSTAKA</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Shellac</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Montmorillonite</td>
<td>6</td>
</tr>
<tr>
<td>2.3. Polimer Clay Nanokomposit</td>
<td>7</td>
</tr>
<tr>
<td>2.4. Thermogravimetric Analysis (TGA)</td>
<td>9</td>
</tr>
<tr>
<td>2.5. Fourier Transform Infrared (FTIR)</td>
<td>10</td>
</tr>
<tr>
<td>2.6. Water Vapour Transmission Rate (WVTR)</td>
<td>11</td>
</tr>
<tr>
<td>BAB III. METODE PENELITIAN</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Waktu dan Tempat Penelitian</td>
<td>12</td>
</tr>
<tr>
<td>3.2. Alat dan Bahan Penelitian</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1. Alat Penelitian</td>
<td>12</td>
</tr>
<tr>
<td>3.2.2. Bahan Penelitian</td>
<td>13</td>
</tr>
<tr>
<td>3.3. Metode Penelitian</td>
<td>13</td>
</tr>
<tr>
<td>3.3.1. Karakterisasi</td>
<td>14</td>
</tr>
<tr>
<td>3.3.1.1. Uji TGA</td>
<td>14</td>
</tr>
<tr>
<td>3.3.1.2. Uji FTIR</td>
<td>14</td>
</tr>
<tr>
<td>3.3.1.3. Uji WVTR</td>
<td>14</td>
</tr>
<tr>
<td>BAB IV. HASIL DAN PEMBAHASAN</td>
<td>15</td>
</tr>
<tr>
<td>4.1. Proses Penguapan</td>
<td>15</td>
</tr>
<tr>
<td>4.2. Hasil Uji FTIR</td>
<td>16</td>
</tr>
</tbody>
</table>
4.3. Hasil Uji TGA ... 20
4.4. Hasil Uji WVTR .. 23
BAB V. KESIMPULAN DAN SARAN .. 26
 5.1. Kesimpulan ... 26
 5.2. Saran ... 26
DAFTAR PUSTAKA ... 27
LAMPIRAN-LAMPIRAN ... 29
DAFTAR GAMBAR

Gambar 2.1. Struktur Molekul Shellac: (a) poliest er dan (b) ester tunggal 5
Gambar 2.2. Gambar shellac dan beberapa hasil olahannya: a. shellac,
b. mica, c. kayu yang telah dipernis, d. kripik shellac
e. permen yang menggunakan shellac sebagai pelapis 6
Gambar 2.3. Struktur Kristal Montmorillonite................................. 7
Gambar 2.4. Perbedaan morfologi pendispersian filler pada matriks polimer 8
Gambar 2.5. Perumpamaan senyawa.. 10
Gambar 4.1. Lapis tipis komposit shellac-MMT A. 0,5 wt% dan B. 1 wt%... 15
Gambar 4.2. Lapis tipis komposit shellac-MMT A. 1 wt%, B. 3 wt%
 C. 5 wt%, D. 10 wt%, E. 20 wt%, F. 30 wt%, G. 40 wt%
 H. 50 wt% ... 16
Gambar 4.3. Proses polimerisasi shellac .. 17
Gambar 4.4. Spektrum FTIR tanpa pemanasan pada suhu 125 °C
 untuk shellac-MMT nanokomposit dari berbagai konsentrasi ... 17
Gambar 4.5. Spektrum FTIR dengan pemanasan pada suhu 125 °C
 untuk shellac-MMT nanokomposit 3 wt%............................... 18
Gambar 4.6. Spektrum FTIR dengan pemanasan selama 30 menit pada suhu
 125 °C untuk shellac-MMT nanokomposit 3 wt%,
 7 wt% dan 50 wt% ... 20
Gambar 4.7. Termogram shellac-MMT nanokomposit......................... 21
Gambar 4.8. Kumulasi uap air yang melewat lapisan sebagai fungsi dari
 waktu untuk shellac-MMT: a)3 wt%, b)7 wt%, c)10 wt%,
d)30 wt%, dan e)50 wt% ... 24
Gambar 4.9. Kurva Water Vapour Transmission Rate (WVTR)
 untuk shellac-MMT nanokomposit dari berbagai konsentrasi .. 24
DAFTAR TABEL

Halaman

Tabel 4.1. Data Hasil TGA ... 21