PENDUGA RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA PENGAMBILAN SAMPEL ACAK STRATIFIKASI DENGAN MEMINIMUMKAN RATA-RATA KUADRAT SESATAN

ZULAIKAH, ISKA FATMA (2015) PENDUGA RASIO-PRODUK UNTUK RATA-RATA POPULASI PADA PENGAMBILAN SAMPEL ACAK STRATIFIKASI DENGAN MEMINIMUMKAN RATA-RATA KUADRAT SESATAN. Other thesis, Universitas Sebelas Maret .

[img]
Preview
PDF - Published Version
Download (647Kb) | Preview

    Abstract

    Iska Fatma Zulaikah, 2015. RATIO-PRODUCT ESTIMATOR TO POPULATION MEAN IN STRATIFIED RANDOM SAMPLING BY MINIMIZING THE MEAN SQUARED ERROR. Faculty of Mathematics and Natural Sciences. Sebelas Maret University. Ratio-Product estimator is used to estimate population mean. Ratio-Products estimator is a combination of ratio and product estimator. Ratio-Product estimator can be used if there is a positive or negative correlation between study variable and auxiliary variable. Estimator used in this research is the ratio-products estimator by minimizing the mean squared error. This research aimed to review ratio-product estimator in strati�ed random sampling which contains � and to calculate the mean squared error of this estimator. The optimum value of � which can produce a minimum mean squared error is obtained by taking the derivative of the mean squared error with respect to ��alpha. Ratio-Product estimator is applied to estimate the mean of rice production in Sukoharjo Regency in 2013. Proportional allocation is used to distribute the sample of each stratum with sample size taken was 50. The results of this study showed that the mean of rice production is 1965.1320 tons. Keywords : ratio-product estimator, population mean, strati�ed

    Item Type: Thesis (Other)
    Subjects: Q Science > QA Mathematics
    Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam
    Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
    Depositing User: Afifah Nur Laili
    Date Deposited: 20 Nov 2015 08:39
    Last Modified: 20 Nov 2015 08:39
    URI: https://eprints.uns.ac.id/id/eprint/21741

    Actions (login required)

    View Item