RANCANG BANGUN
MESIN PEMBUAT SERBUK JAMU

PROYEK AKHIR
Diajukan untuk memenuhi persyaratan guna
Memperoleh gelar Ahli Madya (A.Md)

Disusun Oleh :
M. ZAKI HADI SUSASTRA
I8110028

PROGRAM DIPLOMA III TEKNIK MESIN PRODUKSI
FAKULTAS TEKNIK
UNIVERSITAS SEBELAS MARET
SURAKARTA
2014
KATA PENGANTAR

Segala puji bagi Tuhan Yang Maha Esa yang telah memberikan berkat dan anugrahNya sehingga penulis dapat menyelesaikan laporan proyek akhir dengan judul “RANCANG BANGUN MESIN PEMBUAT SERBUK JAMU”. Hal ini ditempuh sebagai salah satu langkah menambah ilmu pengetahuan dan teknologi khususnya dibidang teknik mesin.

Atas terselesaikannya laporan proyek akhir ini, maka penulis mengucapkan terimakasih kepada:

1. Bapak Heru Sukanto, S.T.,M.T. selaku Ketua program D III Teknik Mesin UNS.
5. Seluruh laboran dan rekan mahasiswa jurusan Teknik Mesin Produksi serta seluruh pihak yang tidak dapat disebutkan satu persatu.

Dalam penulisan laporan dengan judul Rancang Bangun Mesin Pembuat Serbuk Jamu, penulis menyadari masih banyak kekurangan. Oleh karena itu kritik dan saran yang membangun sangat diharapkan untuk kesempurnaan laporan ini.

Surakarta, Juli 2014

Penulis
RANCANG BANGUN
MESIN PEMBUAT SERBUK JAMU

M. Zaki Hadi Susastra

ABSTRAK

Laporan proyek akhir ini berisi tentang desain mesin pembuat serbuk jamu. Tujuan dari proyek yaitu untuk merancang dan menganalisa kekuatan konstruksi mesin pembuat serbuk jamu agar aman untuk digunakan.

Laporan proyek akhir ini membahas tentang desain mesin pembuat serbuk jamu. Bagian-bagian mesin pembuat serbuk jamu adalah rangka, tabung, pisau, sekat tabung, pisau, poros, pulley, belt, dan motor listrik. Sistem rangka dan pengelasan merupakan bagian yang sangat penting untuk kekuatan konstruksi dan kenyamanan bagi pengguna.

Hasil perhitungan tegangan pada rangka, diperoleh tegangan tarik sebesar 4.26 N/mm² dan tegangan izin bahan sebesar 92.5 N/mm². Dengan demikian perancangan rangka mesin pembuat serbuk jamu ini aman.

Kata Kunci: Mesin pembuat serbuk jamu, tegangan.
DAFTAR ISI

Halaman Judul .. i
Halaman Persetujuan .. ii
Halaman Pengesahan ... iii
Kata Pengantar .. iv
Abstrak .. v
Daftar Isi ... vi
Daftar Gambar ... viii
Daftar Rumus ... x
Daftar Tabel ... xi

BAB I PENDAHULUAN ... 1
 1.1 Latar Belakang .. 2
 1.2 Rumusan Masalah .. 2
 1.3 Sistematika Penulisan .. 2
 1.4 Tujuan ... 3
 1.5 Manfaat .. 3

BAB II DASAR TEORI ... 4
 2.1 Struktur Mekanik ... 4
 2.2 Daya Penggerak .. 7
 2.3 Poros ... 9
 2.3.1 Macam-Macam Poros .. 9
 2.3.2 Hal-hal yang Perlu Diperhatikan Dalam Perencanaan
 Poros ... 10
 2.4 Bantalan ... 11
2.4.1 Bantalan Luncur ... 12
2.4.2 Bantalan Gelinding ... 12
2.5 Mur dan Baut ... 13
2.6 Solidwork ... 14
 2.6.1 Tegangan (Von Misses) .. 14
 2.6.2 Perubahan Bentuk (Displacement) 15
 2.6.3 Faktor Keamanan .. 15
2.7 Proses Permesinan Mesin Las ... 15
 2.7.1 Pengertian Pengelasan .. 15
 2.7.2 Kekuatan las ... 17

BAB III PERENCANAAN DAN GAMBAR

3.1 Flow Chart ... 18
3.2 Perancangan Produk .. 19
 3.2.1 Design Requirement and Objective (DR&O) 19
 3.2.2 Blok fungsi ... 19
 3.2.3 Morfologi Mesin Pembuat Serbuk Jamu 20
 3.2.3.1 Pengembangan Konsep Produk Pertama 22
 3.2.3.2 Pengembangan Konsep Produk Kedua 24
 3.2.3.3 Pengembangan Konsep Produk Ketiga 25
 3.2.4 Evaluasi Konsep Produk (Metode Pugh) 26
 3.2.5 Gambar Detail Konsep Rancangan 30
 3.2.5.1 Gambar 3D .. 30
 3.2.5.2 Gambar 2D .. 31
 3.2.6 Prinsip Kerja Mesin Pembuat Serbuk Jamu 31
3.2.7 Spesifikasi Mesin Pembuat Serbuk Jamu.........................32

BAB IV SIMULASI SOLIDWORKS

4.1 Pembebanan Pada Rangka ...33
4.2 Simulasi Analisis Kekuatan Rangka36
4.3 Hasil Simulasi ...38
 4.3.1 Faktor Keamanan (Factor of Safety/FOS/SF)40
 4.3.2 Tegangan (Von Misses) ...41
 4.3.3 Perubahan Bentuk (Displacement)42
4.4 Perencanaan Ragka ..41
 4.4.1 Analisa Gaya Pada Batang A-B/C-D41
 4.4.2 Tegangan Pada Rangka ...44
4.5 Perhitungan Las ...47

BAB V PENUTUP

5.1 Kesimpulan ..49
5.2 Saran ...50

DAFTAR PUSTAKA ..51

LAMPIRAN ...
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tumpuan Roll</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Tumpuan Sendi</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Tumpuan Jepit</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Arah Gaya Normal Positif</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>Arah Gaya Normal Negatif</td>
<td>6</td>
</tr>
<tr>
<td>2.6</td>
<td>Arah Geser Positif</td>
<td>6</td>
</tr>
<tr>
<td>2.7</td>
<td>Arah Geser Negatif</td>
<td>6</td>
</tr>
<tr>
<td>2.8</td>
<td>Arah Momen Lentur Positif</td>
<td>6</td>
</tr>
<tr>
<td>2.9</td>
<td>Arah Momen Lentur Negatif</td>
<td>7</td>
</tr>
<tr>
<td>2.10</td>
<td>Macam-macam Bantalan Gelinding</td>
<td>13</td>
</tr>
<tr>
<td>2.11</td>
<td>Macam-macam Mur dan Baut</td>
<td>14</td>
</tr>
<tr>
<td>2.12</td>
<td>Prinsip Kerja Las Listrik</td>
<td>16</td>
</tr>
<tr>
<td>2.13</td>
<td>Jenis-jenis Sambungan las</td>
<td>16</td>
</tr>
<tr>
<td>2.14</td>
<td>Bentuk Alur/Kampuh las</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart perancangan Mesin Pembuat Serbuk Jamu</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Blok Fungsi</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Sketsa Alternatif Rancangan 1</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Mesin Alternatif Rancangan 2</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Mesin Alternatif Rancangan 3</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>Gambar 3D Konsep 1</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Gambar 2D Konsep 1</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Beban Dari Tabung 1</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Beban Dari Tabung 2</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Beban Dari Corong Bawah</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Bearing, tutup bearing, poros, dan pulley</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Beban dari motor listrik dan pulley</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Beban Keseluruhan</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Pemberian Tumpuan</td>
<td>36</td>
</tr>
<tr>
<td>4.8</td>
<td>Pembebanan Pada Rangka</td>
<td>37</td>
</tr>
<tr>
<td>4.9</td>
<td>Pemberian Gravitasi</td>
<td>37</td>
</tr>
</tbody>
</table>
Gambar 4.10 Pengaturan *Safety Factor* ... 38
Gambar 4.11 Hasil Simulasi *Safety Factor* .. 39
Gambar 4.12 Tegangan Hasil Simulasi... 39
Gambar 4.13 Hasil Simulasi *Displacement*.. 40
Gambar 4.14 Rangka Batang A-B/C-D ... 41
Gambar 4.15 Gaya Yang Bekerja Pada Batang A-B .. 42
Gambar 4.16 Titik Potongan Gaya A-B ... 42
Gambar 4.17 Reaksi Gaya Dalam Potongan x-x Kiri ... 43
Gambar 4.18 Reaksi gaya Dalam Potongan y-y Kanan 43
Gambar 4.19 Bagian Yang Terkena Tegangan Paling Besar 45
Gambar 4.20 *Type Of Weld* ... 46
DAFTAR RUMUS

Halaman

Rumus 2.1 Persamaan Jumlah Gaya Arah Sumbu x 5
Rumus 2.2 Persamaan Jumlah Gaya Arah Sumbu y 5
Rumus 2.3 Persamaan Jumlah Momen ... 5
Rumus 2.4 Persamaan Daya Berdasarkan Usaha Atau Energi Tiap Satuan Waktu .. 7
Rumus 2.5 Persamaan Daya Berdasarkan Gaya Dan Percepatan 7
Rumus 2.6 Persamaan Daya Berdasarkan Torsi Yang Bekerja 8
Rumus 2.7 Persamaan Daya Berdasarkan Putaran Poros 8
Rumus 2.8 Persamaan Gaya .. 8
Rumus 2.9 Persamaan Harga Berat (Massa) .. 9
Rumus 2.10 Persamaan Torsi .. 9
Rumus 2.11 Persamaan Tegangan Geser Akibat Moment......................... 17
Rumus 2.12 Persamaan Tegangan Tarik ... 17
Rumus 2.13 Persamaan Momen ... 17
Rumus 2.14 Persamaan Section Modulus .. 17
Rumus 2.15 Persamaan Tegangan Geser Akibat Gaya Geser Dan Momen 17
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Kriteria Perancangan</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Matriks Morfologi Bentuk Fisik Mesin Pembuat Serbuk Jamu</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Matriks Pengambilan Keputusan</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Matriks Pengambilan Keputusan</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Tabel Gaya Dan Momen Potongan x-x Kiri</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Tabel Gaya Dan Momen Pada Potongan y-y Kanan</td>
<td>44</td>
</tr>
</tbody>
</table>